playbookS

How to use n-gram analysis to increase Google Ads conversions?

Use this playbook to run an n-gram analysis to get hidden information about your Google Ads conversions. It's the easiest way to drive more conversions, cut costs, and optimize your B2B paid campaigns.

author
Vikash Koushik
December 13, 2024
Required Tools
Table of Contents
Increase your pipeline conversions
Let's Talk

I’ve got to hand it to Google: they give us some data…just not enough data. 

You know the feeling, right? 

You dive into your search terms, looking for the magic words that bring in clicks and conversions. But instead, you’re left piecing together incomplete puzzle pieces, wondering what’s really driving performance.

Enter n-gram analysis. 

Think of n-grams as the Sherlock Holmes of Google Ads—they help us see the individual words or phrases within search terms that make a difference. 

Rather than looking at the entire query, n-grams break it down, showing patterns and trends across campaigns. With n-grams, I can finally spot if “software” or “solutions” is the heavy lifter or if certain phrases are just hogging the budget with no return.

Let’s jump into how you can set this up.

Step 1: Setting up the N-Gram script in Google Ads

Now, I know setting up scripts sounds a bit techy, but trust me — no coding wizardry required. 

This script is plug-and-play, and once it’s running, you’ll have a goldmine of data inside your spreadsheet ready for you to analyze and take action. 

Here’s how to do it:

1. Copy this script

Huge shout out to Nils Rooijmans for this script that makes it incredibly easy to pull all the data we need into a spreadsheet.

/**
*
* Search Query Mining Tool
*
* This script calculates the contribution of each word or phrase found in the 
* search query report and outputs a report into a Google Doc spreadsheet.
*
**/
 
function main() {
  //////////////////////////////////////////////////////////////////////////////
  // Options
   
  var startDate = "2024-01-01";
  var endDate = "2024-08-01";
  // The start and end date of the date range for your search query data
  // Format is yyyy-mm-dd
   
  var currencySymbol = "$";
  // The currency symbol used for formatting. For example "£", "$" or "€".
   
  var campaignNameContains = "";
  // Use this if you only want to look at some campaigns
  // such as campaigns with names containing 'Brand' or 'Shopping'.
  // Leave as "" if not wanted.
   
  var campaignNameDoesNotContain = "";
  // Use this if you want to exclude some campaigns
  // such as campaigns with names containing 'Brand' or 'Shopping'.
  // Leave as "" if not wanted.
   
  var ignorePausedCampaigns = true;
  // Set this to true to only look at currently active campaigns.
  // Set to false to include campaigns that had impressions but are currently paused.
   
  var ignorePausedAdGroups = true;
  // Set this to true to only look at currently active ad groups.
  // Set to false to include ad groups that had impressions but are currently paused.
   
  var checkNegatives = true;
  // Set this to true to remove queries that would be excluded by your negative keywords.
   
  var spreadsheetUrl = "YOUR_SPREADSHEET_URL";
  // The URL of the Google Doc the results will be put into.
   
  var minNGramLength = 1;
  var maxNGramLength = 3;
  // The word length of phrases to be checked.
  // For example if minNGramLength is 1 and maxNGramLength is 3, 
  // phrases made of 1, 2 and 3 words will be checked.
  // Change both min and max to 1 to just look at single words.
   
  var clearSpreadsheet = true;
   
   
  //////////////////////////////////////////////////////////////////////////////
  // Thresholds
   
  var queryCountThreshold = 0;
  var impressionThreshold = 10;
  var clickThreshold = 0;
  var costThreshold = 0;
  var conversionThreshold = 0;
  // Words will be ignored if their statistics are lower than any of these thresholds
   
   
  //////////////////////////////////////////////////////////////////////////////
  // Check the spreadsheet has been entered, and that it works
  if (spreadsheetUrl.replace(/[AEIOU]/g,"X") == "https://docs.google.com/YXXR-SPRXXDSHXXT-XRL-HXRX") {
    Logger.log("Problem with the spreadsheet URL: make sure you've replaces the default with a valid spreadsheet URL.");
    return;
  }
  try {
    var spreadsheet = SpreadsheetApp.openByUrl(spreadsheetUrl);
  } catch (e) {
    Logger.log("Problem with the spreadsheet URL: '" + e + "'");
    return;
  }
   
  // Get the IDs of the campaigns to look at
  var dateRange = startDate.replace(/-/g, "") + "," + endDate.replace(/-/g, "");
  var activeCampaignIds = [];
  var whereStatements = "";
   
  if (campaignNameDoesNotContain != "") {
    whereStatements += "AND CampaignName DOES_NOT_CONTAIN_IGNORE_CASE '" + campaignNameDoesNotContain + "' ";
  }
  if (ignorePausedCampaigns) {
    whereStatements += "AND CampaignStatus = ENABLED ";
  } else {
    whereStatements += "AND CampaignStatus IN ['ENABLED','PAUSED'] ";
  }
   
  var campaignReport = AdWordsApp.report(
    "SELECT CampaignName, CampaignId " +
    "FROM   CAMPAIGN_PERFORMANCE_REPORT " +
    "WHERE CampaignName CONTAINS_IGNORE_CASE '" + campaignNameContains + "' " +
    "AND Impressions > 0 " + whereStatements +
    "DURING " + dateRange
  );
  var campaignRows = campaignReport.rows();
  while (campaignRows.hasNext()) {
    var campaignRow = campaignRows.next();
    activeCampaignIds.push(campaignRow["CampaignId"]);
  }//end while
   
  if (activeCampaignIds.length == 0) {
    Logger.log("Could not find any campaigns with impressions and the specified options.");
    return;
  }
   
  var whereAdGroupStatus = "";
  if (ignorePausedAdGroups) {
    var whereAdGroupStatus = "AND AdGroupStatus = ENABLED ";
  } else {
    whereAdGroupStatus += "AND AdGroupStatus IN ['ENABLED','PAUSED'] ";
  }
   
   
  //////////////////////////////////////////////////////////////////////////////
  // Find the negative keywords
  var negativesByGroup = [];
  var negativesByCampaign = [];
  var sharedSetData = [];
  var sharedSetNames = [];
  var sharedSetCampaigns = [];
   
  if (checkNegatives) {
    // Gather ad group level negative keywords
    var keywordReport = AdWordsApp.report(
      "SELECT CampaignId, AdGroupId, Criteria, KeywordMatchType " +
      "FROM   KEYWORDS_PERFORMANCE_REPORT " +
      "WHERE Status = ENABLED AND IsNegative = TRUE " + whereAdGroupStatus +
      "AND CampaignId IN [" + activeCampaignIds.join(",") + "] " +
      "DURING " + dateRange
      );
     
    var keywordRows = keywordReport.rows();
    while (keywordRows.hasNext()) {
      var keywordRow = keywordRows.next();
       
      if (negativesByGroup[keywordRow["AdGroupId"]] == undefined) {
        negativesByGroup[keywordRow["AdGroupId"]] = 
          [[keywordRow["Criteria"].toLowerCase(),keywordRow["KeywordMatchType"].toLowerCase()]];
      } else {
        negativesByGroup[keywordRow["AdGroupId"]].push([keywordRow["Criteria"].toLowerCase(),keywordRow["KeywordMatchType"].toLowerCase()]);
      }
    }
     
    // Gather campaign level negative keywords
    var campaignNegReport = AdWordsApp.report(
      "SELECT CampaignId, Criteria, KeywordMatchType " +
      "FROM   CAMPAIGN_NEGATIVE_KEYWORDS_PERFORMANCE_REPORT " +
      "WHERE  IsNegative = TRUE " +
      "AND CampaignId IN [" + activeCampaignIds.join(",") + "]"
    );
    var campaignNegativeRows = campaignNegReport.rows();
    while (campaignNegativeRows.hasNext()) {
      var campaignNegativeRow = campaignNegativeRows.next();
      if (negativesByCampaign[campaignNegativeRow["CampaignId"]] == undefined) {
        negativesByCampaign[campaignNegativeRow["CampaignId"]] = [[campaignNegativeRow["Criteria"].toLowerCase(),campaignNegativeRow["KeywordMatchType"].toLowerCase()]];
      } else {
        negativesByCampaign[campaignNegativeRow["CampaignId"]].push([campaignNegativeRow["Criteria"].toLowerCase(),campaignNegativeRow["KeywordMatchType"].toLowerCase()]);
      }
    }
     
    // Find which campaigns use shared negative keyword sets
    var campaignSharedReport = AdWordsApp.report(
      "SELECT CampaignName, CampaignId, SharedSetName, SharedSetType, Status " +
      "FROM   CAMPAIGN_SHARED_SET_REPORT " +
      "WHERE SharedSetType = NEGATIVE_KEYWORDS " +
      "AND CampaignId IN [" + activeCampaignIds.join(",") + "]");
    var campaignSharedRows = campaignSharedReport.rows();
    while (campaignSharedRows.hasNext()) {
      var campaignSharedRow = campaignSharedRows.next();
      if (sharedSetCampaigns[campaignSharedRow["SharedSetName"]] == undefined) {
        sharedSetCampaigns[campaignSharedRow["SharedSetName"]] = [campaignSharedRow["CampaignId"]];
      } else {
        sharedSetCampaigns[campaignSharedRow["SharedSetName"]].push(campaignSharedRow["CampaignId"]);
      }
    }
     
    // Map the shared sets' IDs (used in the criteria report below)
    // to their names (used in the campaign report above)
    var sharedSetReport = AdWordsApp.report(
      "SELECT Name, SharedSetId, MemberCount, ReferenceCount, Type " +
      "FROM   SHARED_SET_REPORT " +
      "WHERE ReferenceCount > 0 AND Type = NEGATIVE_KEYWORDS ");
    var sharedSetRows = sharedSetReport.rows();
    while (sharedSetRows.hasNext()) {
      var sharedSetRow = sharedSetRows.next();
      sharedSetNames[sharedSetRow["SharedSetId"]] = sharedSetRow["Name"];
    }
     
    // Collect the negative keyword text from the sets,
    // and record it as a campaign level negative in the campaigns that use the set
     
    /* DEPERECATED CODE     
    var sharedSetReport = AdWordsApp.report(
      "SELECT SharedSetId, KeywordMatchType, Criteria " +
      "FROM   SHARED_SET_CRITERIA_REPORT ");
    var sharedSetRows = sharedSetReport.rows();
    while (sharedSetRows.hasNext()) {
      var sharedSetRow = sharedSetRows.next();
      var setName = sharedSetNames[sharedSetRow["SharedSetId"]];
      if (sharedSetCampaigns[setName] !== undefined) {
        for (var i=0; i<sharedSetCampaigns[setName].length; i++) {
          var campaignId = sharedSetCampaigns[setName][i];
          if (negativesByCampaign[campaignId] == undefined) {
            negativesByCampaign[campaignId] = 
              [[sharedSetRow["Criteria"].toLowerCase(),sharedSetRow["KeywordMatchType"].toLowerCase()]];
          } else {
            negativesByCampaign[campaignId].push([sharedSetRow["Criteria"].toLowerCase(),sharedSetRow["KeywordMatchType"].toLowerCase()]);
          }
        }
      }
    }
    */
     
    // UPDATED CODE TO BE COMPATIBLE WITH NEW SCRIPT ENVIRONMENT
    // Collect the negative keyword text from the sets,
    // and record it as a campaign level negative in the campaigns that use the set
    var GAQLquery = "SELECT shared_set.id, shared_criterion.keyword.match_type, shared_criterion.keyword.text FROM shared_criterion";
     
    var sharedSetRows = AdsApp.search(GAQLquery);
    while (sharedSetRows.hasNext()) {
      var sharedSetRow = sharedSetRows.next();
      var setName = sharedSetNames[sharedSetRow.sharedSet.id];
      if (sharedSetCampaigns[setName] !== undefined) {
        for (var i=0; i<sharedSetCampaigns[setName].length; i++) {
          var campaignId = sharedSetCampaigns[setName][i];
          if (negativesByCampaign[campaignId] == undefined) {
            negativesByCampaign[campaignId] = 
              [[sharedSetRow.sharedCriterion.keyword.text.toLowerCase(),sharedSetRow.sharedCriterion.keyword.matchType.toLowerCase()]];
          } else {
            negativesByCampaign[campaignId].push([sharedSetRow.sharedCriterion.keyword.text.toLowerCase(),sharedSetRow.sharedCriterion.keyword.matchType.toLowerCase()]);
          }
        }
      }
    } 
     
         
     
    Logger.log("Finished finding negative keywords");
  }// end if
   
   
  //////////////////////////////////////////////////////////////////////////////
  // Define the statistics to download or calculate, and their formatting
   
  var statColumns = ["Clicks", "Impressions", "Cost", "Conversions", "ConversionValue"];
  var calculatedStats = [["CTR","Clicks","Impressions"],
                         ["CPC","Cost","Clicks"],
                         ["Conv. Rate","Conversions","Clicks"],
                         ["Cost / conv.","Cost","Conversions"],
                         ["Conv. value/cost","ConversionValue","Cost"]]
  var currencyFormat = currencySymbol + "#,##0.00";
  var formatting = ["#,##0", "#,##0", "#,##0", currencyFormat, "#,##0", currencyFormat,"0.00%",currencyFormat,"0.00%",currencyFormat,"0.00%"];
   
   
  //////////////////////////////////////////////////////////////////////////////
  // Go through the search query report, remove searches already excluded by negatives
  // record the performance of each word in each remaining query
   
  var queryReport = AdWordsApp.report(
    "SELECT CampaignName, CampaignId, AdGroupId, AdGroupName, Query, " + statColumns.join(", ") + " " +
    "FROM SEARCH_QUERY_PERFORMANCE_REPORT " +
      "WHERE CampaignId IN [" + activeCampaignIds.join(",") + "] " + whereAdGroupStatus +
        "DURING " + dateRange);
   
  var numberOfWords = [];
  var campaignNGrams = {};
  var adGroupNGrams = {};
  var totalNGrams = [];
   
  for (var n=minNGramLength; n<maxNGramLength+1; n++) {
    totalNGrams[n] = {};
  }
   
  var queryRows = queryReport.rows();
  while (queryRows.hasNext()) {
    var queryRow = queryRows.next();
     
    if (checkNegatives) {
      var searchIsExcluded = false;
       
      // Checks if the query is excluded by an ad group level negative
      if (negativesByGroup[queryRow["AdGroupId"]] !== undefined) {
        for (var i=0; i<negativesByGroup[queryRow["AdGroupId"]].length; i++) {
          if ( (negativesByGroup[queryRow["AdGroupId"]][i][1] == "exact" &&
                queryRow["Query"] == negativesByGroup[queryRow["AdGroupId"]][i][0]) ||
              (negativesByGroup[queryRow["AdGroupId"]][i][1] != "exact" &&
              (" "+queryRow["Query"]+" ").indexOf(" "+negativesByGroup[queryRow["AdGroupId"]][i][0]+" ") > -1 )){
            searchIsExcluded = true;
            break;
          }
        }
      }
       
      // Checks if the query is excluded by a campaign level negative
      if (!searchIsExcluded && negativesByCampaign[queryRow["CampaignId"]] !== undefined) {
        for (var i=0; i<negativesByCampaign[queryRow["CampaignId"]].length; i++) {
          if ( (negativesByCampaign[queryRow["CampaignId"]][i][1] == "exact" &&
                queryRow["Query"] == negativesByCampaign[queryRow["CampaignId"]][i][0]) ||
              (negativesByCampaign[queryRow["CampaignId"]][i][1]!= "exact" &&
              (" "+queryRow["Query"]+" ").indexOf(" "+negativesByCampaign[queryRow["CampaignId"]][i][0]+" ") > -1 )){
            searchIsExcluded = true;
            break;
          }
        }
      }
       
      if (searchIsExcluded) {continue;}
    }
     
    var currentWords = queryRow["Query"].split(" ");
     
    if (campaignNGrams[queryRow["CampaignName"]] == undefined) {
      campaignNGrams[queryRow["CampaignName"]] = [];
      adGroupNGrams[queryRow["CampaignName"]] = {};
       
      for (var n=minNGramLength; n<maxNGramLength+1; n++) {
        campaignNGrams[queryRow["CampaignName"]][n] = {};
      }
    }
     
    if (adGroupNGrams[queryRow["CampaignName"]][queryRow["AdGroupName"]] == undefined) {
      adGroupNGrams[queryRow["CampaignName"]][queryRow["AdGroupName"]] = [];
      for (var n=minNGramLength; n<maxNGramLength+1; n++) {
        adGroupNGrams[queryRow["CampaignName"]][queryRow["AdGroupName"]][n] = {};
      }
    }
     
    var stats = [];
    for (var i=0; i<statColumns.length; i++) {
      stats[i] = parseFloat(queryRow[statColumns[i]].replace(/,/g, ""));
    }
     
    var wordLength = currentWords.length;
    if (wordLength > 6) {
      wordLength = "7+";
    }
    if (numberOfWords[wordLength] == undefined) {
      numberOfWords[wordLength] = [];
    }
    for (var i=0; i<statColumns.length; i++) {
      if (numberOfWords[wordLength][statColumns[i]] > 0) {
        numberOfWords[wordLength][statColumns[i]] += stats[i];
      } else {
        numberOfWords[wordLength][statColumns[i]] = stats[i];
      }
    }
     
    // Splits the query into n-grams and records the stats for each
    for (var n=minNGramLength; n<maxNGramLength+1; n++) {
      if (n > currentWords.length) {
        break;
      }
       
      var doneNGrams = [];
       
      for (var w=0; w < currentWords.length - n + 1; w++) {
        var currentNGram = '="' + currentWords.slice(w,w+n).join(" ") + '"';
         
        if (doneNGrams.indexOf(currentNGram) < 0) {
           
          if (campaignNGrams[queryRow["CampaignName"]][n][currentNGram] == undefined) {
            campaignNGrams[queryRow["CampaignName"]][n][currentNGram] = {};
            campaignNGrams[queryRow["CampaignName"]][n][currentNGram]["Query Count"] = 0;
          }
          if (adGroupNGrams[queryRow["CampaignName"]][queryRow["AdGroupName"]][n][currentNGram] == undefined) {
            adGroupNGrams[queryRow["CampaignName"]][queryRow["AdGroupName"]][n][currentNGram] = {};
            adGroupNGrams[queryRow["CampaignName"]][queryRow["AdGroupName"]][n][currentNGram]["Query Count"] = 0;
          }
          if (totalNGrams[n][currentNGram] == undefined) {
            totalNGrams[n][currentNGram] = {};
            totalNGrams[n][currentNGram]["Query Count"] = 0;
          }
           
          campaignNGrams[queryRow["CampaignName"]][n][currentNGram]["Query Count"]++;
          adGroupNGrams[queryRow["CampaignName"]][queryRow["AdGroupName"]][n][currentNGram]["Query Count"]++;
          totalNGrams[n][currentNGram]["Query Count"]++;
           
          for (var i=0; i<statColumns.length; i++) {
            if (campaignNGrams[queryRow["CampaignName"]][n][currentNGram][statColumns[i]] > 0) {
              campaignNGrams[queryRow["CampaignName"]][n][currentNGram][statColumns[i]] += stats[i];
            } else {
              campaignNGrams[queryRow["CampaignName"]][n][currentNGram][statColumns[i]] = stats[i];
            }
             
            if (adGroupNGrams[queryRow["CampaignName"]][queryRow["AdGroupName"]][n][currentNGram][statColumns[i]] > 0) {
              adGroupNGrams[queryRow["CampaignName"]][queryRow["AdGroupName"]][n][currentNGram][statColumns[i]] += stats[i];
            } else {
              adGroupNGrams[queryRow["CampaignName"]][queryRow["AdGroupName"]][n][currentNGram][statColumns[i]] = stats[i];
            }
             
            if (totalNGrams[n][currentNGram][statColumns[i]] > 0) {
              totalNGrams[n][currentNGram][statColumns[i]] += stats[i];
            } else {
              totalNGrams[n][currentNGram][statColumns[i]] = stats[i];
            }
          }
           
          doneNGrams.push(currentNGram);
        }
      }
    }
  }
   
  Logger.log("Finished analysing queries.");
   
   
  //////////////////////////////////////////////////////////////////////////////
  // Output the data into the spreadsheet
   
  var wordLengthOutput = [];
  var wordLengthFormat = [];
  var outputs = [];
  var formats = [];
   
  for (var n=minNGramLength; n<maxNGramLength+1; n++) {
    outputs[n] = {};
    outputs[n]['campaign'] = [];
    outputs[n]['adgroup'] = [];
    outputs[n]['total'] = [];
    formats[n] = {};
    formats[n]['campaign'] = [];
    formats[n]['adgroup'] = [];
    formats[n]['total'] = [];
  }
   
  // Create headers
  var calcStatNames = [];
  for (var s=0; s<calculatedStats.length; s++) {
    calcStatNames.push(calculatedStats[s][0]);
  }
  var statNames = statColumns.concat(calcStatNames);
  for (var n=minNGramLength; n<maxNGramLength+1; n++) {
    outputs[n]['campaign'].push(["Campaign","Phrase","Query Count"].concat(statNames));
    outputs[n]['adgroup'].push(["Campaign","Ad Group","Phrase","Query Count"].concat(statNames));
    outputs[n]['total'].push(["Phrase","Query Count"].concat(statNames));
  }
  wordLengthOutput.push(["Word count"].concat(statNames));
   
  // Organise the ad group level stats into an array for output
  for (var n=minNGramLength; n<maxNGramLength+1; n++) {
    for (var campaign in adGroupNGrams) {
      for (var adGroup in adGroupNGrams[campaign]) {
        for (var nGram in adGroupNGrams[campaign][adGroup][n]) {
           
          // skips nGrams under the thresholds
          if (adGroupNGrams[campaign][adGroup][n][nGram]["Query Count"] < queryCountThreshold) {continue;}
          if (adGroupNGrams[campaign][adGroup][n][nGram]["Impressions"] < impressionThreshold) {continue;}
          if (adGroupNGrams[campaign][adGroup][n][nGram]["Clicks"] < clickThreshold) {continue;}
          if (adGroupNGrams[campaign][adGroup][n][nGram]["Cost"] < costThreshold) {continue;}
          if (adGroupNGrams[campaign][adGroup][n][nGram]["Conversions"] < conversionThreshold) {continue;}
           
          var printline = [campaign, adGroup, nGram, adGroupNGrams[campaign][adGroup][n][nGram]["Query Count"]];
           
          for (var s=0; s<statColumns.length; s++) {
            printline.push(adGroupNGrams[campaign][adGroup][n][nGram][statColumns[s]]);
          }
           
          for (var s=0; s<calculatedStats.length; s++) {
            var multiplier = calculatedStats[s][1];
            var divisor = calculatedStats[s][2];
            if (adGroupNGrams[campaign][adGroup][n][nGram][divisor] > 0) {
              printline.push(adGroupNGrams[campaign][adGroup][n][nGram][multiplier] / adGroupNGrams[campaign][adGroup][n][nGram][divisor]);
            } else {
              printline.push("-");
            }
          }
          outputs[n]['adgroup'].push(printline);
          formats[n]['adgroup'].push(["0","0","0"].concat(formatting));
        }
      }
    }
  }
   
  // Organise the campaign level stats into an array for output
  for (var n=minNGramLength; n<maxNGramLength+1; n++) {
    for (var campaign in campaignNGrams) {
      for (var nGram in campaignNGrams[campaign][n]) {
         
        // skips nGrams under the thresholds
        if (campaignNGrams[campaign][n][nGram]["Query Count"] < queryCountThreshold) {continue;}
        if (campaignNGrams[campaign][n][nGram]["Impressions"] < impressionThreshold) {continue;}
        if (campaignNGrams[campaign][n][nGram]["Clicks"] < clickThreshold) {continue;}
        if (campaignNGrams[campaign][n][nGram]["Cost"] < costThreshold) {continue;}
        if (campaignNGrams[campaign][n][nGram]["Conversions"] < conversionThreshold) {continue;}
         
        var printline = [campaign, nGram, campaignNGrams[campaign][n][nGram]["Query Count"]];
         
        for (var s=0; s<statColumns.length; s++) {
          printline.push(campaignNGrams[campaign][n][nGram][statColumns[s]]);
        }
         
        for (var s=0; s<calculatedStats.length; s++) {
          var multiplier = calculatedStats[s][1];
          var divisor = calculatedStats[s][2];
          if (campaignNGrams[campaign][n][nGram][divisor] > 0) {
            printline.push(campaignNGrams[campaign][n][nGram][multiplier] / campaignNGrams[campaign][n][nGram][divisor]);
          } else {
            printline.push("-");
          }
        }
        outputs[n]['campaign'].push(printline);
        formats[n]['campaign'].push(["0","0"].concat(formatting));
      }
    }
  }
   
  // Organise the account level stats into an array for output
  for (var n=minNGramLength; n<maxNGramLength+1; n++) {
    for (var nGram in totalNGrams[n]) {
       
      // skips n-grams under the thresholds
      if (totalNGrams[n][nGram]["Query Count"] < queryCountThreshold) {continue;}
      if (totalNGrams[n][nGram]["Impressions"] < impressionThreshold) {continue;}
      if (totalNGrams[n][nGram]["Clicks"] < clickThreshold) {continue;}
      if (totalNGrams[n][nGram]["Cost"] < costThreshold) {continue;}
      if (totalNGrams[n][nGram]["Conversions"] < conversionThreshold) {continue;}
       
      var printline = [nGram, totalNGrams[n][nGram]["Query Count"]];
       
      for (var s=0; s<statColumns.length; s++) {
        printline.push(totalNGrams[n][nGram][statColumns[s]]);
      }
       
      for (var s=0; s<calculatedStats.length; s++) {
        var multiplier = calculatedStats[s][1];
        var divisor = calculatedStats[s][2];
        if (totalNGrams[n][nGram][divisor] > 0) {
          printline.push(totalNGrams[n][nGram][multiplier] / totalNGrams[n][nGram][divisor]);
        } else {
          printline.push("-");
        }
      }
      outputs[n]['total'].push(printline);
      formats[n]['total'].push(["0"].concat(formatting));
    }
  }
   
  // Organise the word count analysis into an array for output
  for (var i = 1; i<8; i++) {
    if (i < 7) {
      var wordLength = i;
    } else {
      var wordLength = "7+";
    }
     
    var printline = [wordLength];
     
    if (numberOfWords[wordLength] == undefined) {
      printline.push([0,0,0,0,"-","-","-","-"]);
    } else {
      for (var s=0; s<statColumns.length; s++) {
        printline.push(numberOfWords[wordLength][statColumns[s]]);
      }
       
      for (var s=0; s<calculatedStats.length; s++) {
        var multiplier = calculatedStats[s][1];
        var divisor = calculatedStats[s][2];
        if (numberOfWords[wordLength][divisor] > 0) {
          printline.push(numberOfWords[wordLength][multiplier] / numberOfWords[wordLength][divisor]);
        } else {
          printline.push("-");
        }
      }
    }
    wordLengthOutput.push(printline);
    wordLengthFormat.push(formatting);
  }
   
  var filterText = "";
  if (ignorePausedAdGroups) {
    filterText = "Active ad groups";
  } else {
    filterText = "All ad groups";
  }
   
  if (ignorePausedCampaigns) {
    filterText += " in active campaigns";
  } else {
    filterText += " in all campaigns";
  }
   
  if (campaignNameContains != "") {
    filterText += " containing '" + campaignNameContains + "'";
    if (campaignNameDoesNotContain != "") {
      filterText += " and not containing '" + campaignNameDoesNotContain + "'";
    }
  } else if (campaignNameDoesNotContain != "") {
    filterText += " not containing '" + campaignNameDoesNotContain + "'";
  }
   
  // Find or create the required sheets
  var spreadsheet = SpreadsheetApp.openByUrl(spreadsheetUrl);
  var campaignNGramName = [];
  var adGroupNGramName = [];
  var totalNGramName = [];
  var campaignNGramSheet = [];
  var adGroupNGramSheet = [];
  var totalNGramSheet = [];
   
  for (var n=minNGramLength; n<maxNGramLength+1; n++) {
    if (n==1) {
      campaignNGramName[n] = "Campaign Word Analysis";
      adGroupNGramName[n] = "Ad Group Word Analysis";
      totalNGramName[n] = "Account Word Analysis";    
    } else {
      campaignNGramName[n] = "Campaign " + n + "-Gram Analysis";
      adGroupNGramName[n] = "Ad Group " + n + "-Gram Analysis";
      totalNGramName[n] = "Account " + n + "-Gram Analysis";
    }
     
    campaignNGramSheet[n] = spreadsheet.getSheetByName(campaignNGramName[n]);
    if (campaignNGramSheet[n] == null) {
      campaignNGramSheet[n] = spreadsheet.insertSheet(campaignNGramName[n]);
    }
     
    adGroupNGramSheet[n] = spreadsheet.getSheetByName(adGroupNGramName[n]);
    if (adGroupNGramSheet[n] == null) {
      adGroupNGramSheet[n] = spreadsheet.insertSheet(adGroupNGramName[n]);
    }
     
    totalNGramSheet[n] = spreadsheet.getSheetByName(totalNGramName[n]);
    if (totalNGramSheet[n] == null) {
      totalNGramSheet[n] = spreadsheet.insertSheet(totalNGramName[n]);
    }
  }
   
  var wordCountSheet = spreadsheet.getSheetByName("Word Count Analysis");
  if (wordCountSheet == null) {
    wordCountSheet = spreadsheet.insertSheet("Word Count Analysis");
  }
   
  // Write the output arrays to the spreadsheet
  for (var n=minNGramLength; n<maxNGramLength+1; n++) {
    var nGramName = n + "-Grams";
    if (n == 1) {
      nGramName = "Words";
    }
     
    writeOutput(outputs[n]['campaign'], formats[n]['campaign'], campaignNGramSheet[n], nGramName, "Campaign", filterText, clearSpreadsheet);
    writeOutput(outputs[n]['adgroup'], formats[n]['adgroup'], adGroupNGramSheet[n], nGramName, "Ad Group", filterText, clearSpreadsheet);
    writeOutput(outputs[n]['total'], formats[n]['total'], totalNGramSheet[n], nGramName, "Account", filterText, clearSpreadsheet);
  }
   
  writeOutput(wordLengthOutput, wordLengthFormat, wordCountSheet, "Word Count", "Account", filterText, clearSpreadsheet);
   
  Logger.log("Finished writing to spreadsheet.");
} // end main function
 
 
function writeOutput(outputArray, formatArray, sheet, nGramName, levelName, filterText, clearSpreadsheet) {
  for (var i=0;i<5;i++) {
    try {
      if (clearSpreadsheet) {
        sheet.clear();
      }
       
      if (nGramName == "Word Count") {
        sheet.getRange("R1C1").setValue("Analysis of Search Query Performance by Word Count");
      } else {
        sheet.getRange("R1C1").setValue("Analysis of " + nGramName + " in Search Query Report, By " + levelName);
      }
       
      sheet.getRange("R" + (sheet.getLastRow() + 2) + "C1").setValue(filterText);
       
      var lastRow = sheet.getLastRow();
       
      if (formatArray.length == 0) {
        sheet.getRange("R" + (lastRow + 1) + "C1").setValue("No " + nGramName.toLowerCase() + " found within the thresholds.");
      } else {
        sheet.getRange("R" + (lastRow + 1) + "C1:R" + (lastRow+outputArray.length) + "C" + outputArray[0].length).setValues(outputArray);
        sheet.getRange("R" + (lastRow + 2) + "C1:R" + (lastRow+outputArray.length) + "C" + formatArray[0].length).setNumberFormats(formatArray);
         
        var sortByColumns = [];
        if (outputArray[0][0] == "Campaign" || outputArray[0][0] == "Word count") {
          sortByColumns.push({column: 1, ascending: true});
        }
        if (outputArray[0][1] == "Ad Group") {
          sortByColumns.push({column: 2, ascending: true});
        }
        sortByColumns.push({column: outputArray[0].indexOf("Cost") + 1, ascending: false});
        sortByColumns.push({column: outputArray[0].indexOf("Impressions") + 1, ascending: false});
        sheet.getRange("R" + (lastRow + 2) + "C1:R" + (lastRow+outputArray.length) + "C" + outputArray[0].length).sort(sortByColumns);
      }
       
      break;
       
    } catch (e) {
      if (e == "Exception: This action would increase the number of cells in the worksheet above the limit of 2000000 cells.") {
        Logger.log("Could not output " + levelName + " level " + nGramName.toLowerCase() + ": '" + e + "'");
        try {
          sheet.getRange("R" + (sheet.getLastRow() + 2) + "C1").setValue("Not enough space to write the data - try again in an empty spreadsheet");
        } catch (e2) {
          Logger.log("Error writing 'not enough space' message: " + e2);
        }
        break;
      }
       
      if (i == 4) {
        Logger.log("Could not output " + levelName + " level " + nGramName.toLowerCase() + ": '" + e + "'");
      }
    }
  }
}

2. Paste the script into Google Ads

Go to “Tools > Bulk Actions > Scripts” in Google Ads. Hit the blue plus button, then paste in the code you just copied.

3. Link to your Google Sheets

Now, create a new Google Sheet in your Drive and copy its URL. This is where the script will dump all your beautiful n-gram data. Go back to the script and paste the URL where it prompts you for a “YOUR_SPREADSHEET_URL”.

4. Choose your date range

In the script, search for this part of the code and replace it with the date range you want to analyze.

var startDate = "2024-01-01";  
var endDate = "2024-08-01"


N-grams work best over a decent chunk of time. I usually look at the past month or quarter. If this is the first time you’re running an n-gram analysis, I recommend setting it for at least a quarter, maybe even longer to get meaningful data on what terms are delivering.

5. Select campaigns and keyword types

Decide if you want the script to pull from all campaigns or just specific ones. You can also select whether it includes paused keywords or just active ones. Adjust this in the script, but be careful — one wrong punctuation mark, and you might break the script!

This is the part of the script that you need to edit if you want to make any changes:

var campaignNameContains = "";
  // Use this if you only want to look at some campaigns
  // such as campaigns with names containing 'Brand' or 'Shopping'.
  // Leave as "" if not wanted.
   
  var campaignNameDoesNotContain = "";
  // Use this if you want to exclude some campaigns
  // such as campaigns with names containing 'Brand' or 'Shopping'.
  // Leave as "" if not wanted.
   
  var ignorePausedCampaigns = true;
  // Set this to true to only look at currently active campaigns.
  // Set to false to include campaigns that had impressions but are currently paused.
   
  var ignorePausedAdGroups = true;
  // Set this to true to only look at currently active ad groups.
  // Set to false to include ad groups that had impressions but are currently paused.
   
  var checkNegatives = true;
  // Set this to true to remove queries that would be excluded by your negative keywords.

6. Set your N-Gram length

By default, this script shows single words and three-word phrases, but if you’re working with longer search terms (especially in B2B), you might want to add four-word or even five-word phrases.

var minNGramLength = 1;
  var maxNGramLength = 3;
  // The word length of phrases to be checked.
  // For example if minNGramLength is 1 and maxNGramLength is 3, 
  // phrases made of 1, 2 and 3 words will be checked.
  // Change both min and max to 1 to just look at single words.

7. Run the script

Click “Save” and authorize the script when prompted. Once it runs, head over to your linked Google Sheet. The data will populate there, broken down into n-grams by campaign, ad group, and keyword level.

Step 2: Interpreting the N-Gram data and finding patterns

Alright, you’ve got your data, and now the real fun begins. This is where you dig into the numbers, look for trends, and start making changes that will have a tangible impact on your performance. 

Here’s how I approach it:

1. High-cost, low-conversion words

This is a big one for me: I start by looking for keywords or phrases that are costing me but not converting. These are the bleeders. I usually add these as negative keywords so they don’t keep draining my budget.

Here’s an example of what I mean.


I can clearly see that when words “meow”, “bow”, “bark”, and “girraffee” are part of the search phrase, people never convert and it’s costing me a bomb. 

Now, If you ever had a hunch that certain words were costing you (literally), you know how to find which ones to cut.

tip-icon PRO TIP
Don’t pass all form submissions as a conversion to your Google ads account. Send only qualified prospects and qualified meetings as conversion events to your ad networks to train your ad networks.


2. High conversion, low-cost keywords

Now, here’s the good stuff — words that bring conversions at a low cost? These are likely your high-ROI terms. 

You’ll want to focus on these, maybe even bidding a bit more aggressively or structuring ad groups around them. This alone has driven me so many conversions.


In the example above, it’s easy to think keywords with the word “care” tend to convert well. So let’s increase bids.

But that could only lead to disaster since this is only a 1-gram. 

So what do you do?

3. Spot long-tail gold

If you really want to uncover where you’re getting your growth from, you’ll need to dig deeper and look at which “Ad Groups” had keywords that triggered this word and dig into 2-gram, 3-gram, and maybe even 4-gram to see if there are specific phrases and keywords that are driving these conversions.


In this case, when we looked at 2-gram, the phrase “dog care” drove 8 conversions of the 11 that we saw from 1-gram analysis.

Pretty cool, right?

4. High impression, low-click terms

If you spot terms with high impressions but low clicks, it’s a clear signal that your ad is visible but isn’t resonating with searchers. 

This could mean that the ad copy isn’t capturing the intent of the search, or that the search term is too broad, drawing people in who aren’t genuinely interested. 

Here, you have two options: 

  • Refine your ad copy to better align with what users are likely looking for, making it more appealing and relevant to their intent; or
  • Add negative keywords to filter out irrelevant terms and focus impressions on users more likely to engage.

Both tweaks can help increase your click-through rate (CTR) and bring in a more qualified audience.  

5. Discover new keyword opportunities

An n-gram analysis often uncovers terms that are unexpectedly high-performing, revealing exact-match keywords you may not have initially targeted. 

For example, if terms like “HR compliance tools” or “B2B compliance management” show strong conversion rates, consider adding these as exact or phrase-match keywords. 

This approach helps you capture demand directly and strategically, turning insights from your existing campaign into proactive keyword additions. By capitalizing on these opportunities, you can expand your keyword set to reach high-intent audiences without guessing, enhancing both relevance and performance in your campaigns.

Step 3: Using Your N-Gram Data to Optimize Campaigns

Alright, now we’re cooking with gas! You’ve got the data, you’ve spotted patterns, and now it’s time to put these insights into action. 

Here’s how I use n-grams to power my campaigns.

  • Refresh keyword lists: Google Ads is always shifting, so it pays to update your keyword lists based on fresh n-gram insights. I regularly revisit this, dropping underperformers and adding promising phrases.

  • Add high-impact words to ad copy: If “software compliance solutions” keeps showing up as a top performer, why not put those words front and center in your ad copy? It can improve your relevancy and Quality Score, lowering your CPC.

  • Set up alerts for budget suckers: I set alerts for high-spend keywords with zero conversions. This way, I’m not throwing money at terms that aren’t delivering and can catch them before they get out of hand.

  • Increase bids on top converters: If certain words consistently drive conversions at a low cost, I’ll raise bids. Basically, you’re putting your money on a sure thing.

I’m telling you—n-grams are a game-changer for B2B demand-gen. They cut through Google’s messy data and give you a clear path to understanding what’s working. This isn’t just a nice-to-do analysis; it’s a power play that can give you full control over your campaigns. 

So, if you’re tired of guessing, tired of wasting budget, and ready to actually *know* what’s driving results, then it’s time to run that script. Get your data, make the changes, and start seeing the difference in your performance metrics. 

Go grab that n-gram script and get ready to run campaigns like never before. Good luck, and happy optimizing!